Preamble: . As for any organized EMI control, ESD protection consist in anticipating or correcting the unwanted effects of an hostile electromagnetic ambient. Like many EMI threats, ESD manifests through conducted and radiated phenomena, with the latest being often the dominant mode. But there is a unique aspect to ESD, not found in common radiated EMI episodes where the victim box and cables are illuminated by a uniform field. Instead, ESD generates locally a strong field pulse, typically > 1kV/m near the discharge point, dropping quickly as one move away. Therefore, although ESD hardening should be part of a general EMI control, not handled as a separate constraint, some classical EMC solutions may not be sufficient and should be complemented by additional protections.
Finally, the complete EMC Handbook
Michel Mardiguian . has for many years been an internationally recognized writer and lecturer. Michel’s popular series of EMC-articles in Electronic Environment has also been published on the magazine’s international website with readers from all over the world. Michel Mardiguian has now compiled the large number of articles and course material, for a comprehensive handbook.
ESD – Understand and Test for Compliance (Part I)
Electrostatic Discharge (ESD) . is a very common, yet often overlooked problem that can plague electronic equipments in a mysterious way. ESD is like an invisible, mischievous gremlin that come and go un-noticed, until the related failures or malfunctions become apparent. Yet, ESD by its elusive but superfast characteristics and very high frequency spectrum definitely belong to the EMI family. Once understood, the solutions to it are not very different than those for the more classical interference problems, bearing in mind that we will be dealing with a frequency domain up to the GHz, where some EMI solutions are simply not appropriate.
Troubleshooting EMI (Part II, Susceptibility Problems)
Some simple hints . for identifying and fixing EMI troubles. This second part of our EMI Troubleshooting guidelines is devoted to investigation and cure of EMI susceptibility problems. Since, according to our former article (Ref.1) conducted tests are faster and easier to perform, we will concentrate on these and avoid more complex and expensive radiated susceptibility test set-ups. The first half of this article will address the situation where the equipment at stake is still in the plant or lab, at the end of its development phase or in an early stage of production. The second half will cover the more difficult cases where the faultly equipment is already in service, installed at some customer site.
Troubleshooting EMI (Part I, Emission Problems)
Some simple hints . for identifying and fixing EMI troubles. This article covers the essential aspects of a domain which is seldom addressed in current EMC litterature: «What to do when an equipment – or a whole system – is failing the tests or experiencing Interference (EMI) problems ?». Whatever we are dealing with a prototype at the end of its development phase, failing one or several EMC tests, or an already installed equipment that exhibit on-site problems, we face a situation that must be solved quickly, with an equipment that cannot be deeply modified.
EMC FILTERS: Design, Selection and Installation of Power and Signal lines filters
Our former . eight EMC articles were aimed at familiarizing unaware readers with the fundamentals of EMI/EMC, justifying the EMC norms and testing, and explaining in simple terms the five basics interference coupling mechanisms, with the essential guidelines for controlling them. The present article goes deeper into one of the simplest, most compact and economical piece of the entire EMC arsenal: the filter. With current handling ranging from tens of Amp for signal filters up to more than hundred Amps for power line filters, they exist in all sorts of size, volume and packaging. They can be optimized against Common Mode (CM) or Differential Mode (DM) interference, or both.
Shielding of Boxes and Enclosures (Part 2)
Our former . EMC articles reviewed the principal conduction and radiation coupling mechanisms, as they affect equipment/system susceptibility, and the last one (EMC Article #5, June Issue) was addressing Shielded Cables. The present article is focusing on the shielding of equipment boxes, from the smaller hand-held devices up to large cabinets or even entire rooms.
Shielding of Boxes and Enclosures (Part 1)
Our former . EMC articles reviewed the principal conduction and radiation coupling mechanisms, as they affect equipment/system susceptibility, and the last one (EMC Article #5, June Issue) was addressing Shielded Cables. The present article is focusing on the shielding of equipment boxes, from the smaller hand-held devices up to large cabinets or even entire rooms.
Not even the best software in the world works if the hardware doesn’t.
This article . is a summary of the Keynote Speech given by Michel Mardiguian and Ulf Nilsson at Electronic Environment Conference in 2016. The intention was to give an overview of what EMC is, how it influences an organisation and to motivate management to implement an EMC culture in their organisation.
Shielded cables: Their Role in Reducing EMI Susceptibilty and Emissions
This is the 5th article . of our ”EMC awareness” series. At this point, before addressing the coupling path, occuring from (or to) the power mains, it was in order to review a solution that is widely involved in controlling Conducted, Radiated and Crosstalk EMI situations: the use of shielded conductors. The subject is not that simple and requires some insight. This article will explain as clearly as possible for the non-specialist how a cable shield works, how much EMI reduction can be expected, and why the choice of certain cables or installation practices will result in mediocre results.